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Abstract

Introduction: Stress-induced mucosal damage is increasingly understood to be mediated by the
gut-brain axis, where neurotransmitters serve as essential signaling molecules. This review
explores the interplay between gut microbiota and the stress response, highlighting how
neurotransmitters mediate the effects of stress on gut health and mucosal integrity.
Understanding these mechanisms may open new avenues for therapeutic interventions targeting
the gut-brain axis.

Methods: A literature search was completed using PubMed, Web of Science, PsycINFO, and
Embase databases for clinical and preclinical studies related to stress ulcer, gut microbiota and
gut brain axis published in English until 2024.

Results: The gut microbiota has a role in maintaining gastrointestinal health and influencing the
body’s stress response through various pathways, including the enteric and autonomic nervous
systems. It produces microbial metabolites like short-chain fatty acids, tryptophan, and bile
acids, which enter the bloodstream and reach the brain. Microbial neurotransmitters modify the
brain's gut axis. Norepinephrine, released as an adrenal hormone and neurotransmitter, plays a
role in cognition and attention regulation. Dopamine regulates immune responses, motivation,
memory, mood and attention. Serotonin, synthesized in the digestive tract, indirectly impacts
brain function. Glutamate, a key neurotransmitter, is synthesized in the brain, while acetate and
y-aminobutyric acid regulate blood pressure and heart rate. Cortisol, acetylcholine, neuropeptide
Y, and cholecystokinin influence gut function and emotional regulation. Disturbances to gut
microbiota can lead to maladaptive mood and behavior.

Conclusion: The connection between stress ulcer, neurotransmitters, and the gut microbiota was
outlined in this review.
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Introduction

Gut microbiota is important in many nutrition and physiological functions. It regulates
gastrointestinal tract (GIT) and central nervous system functions. It regulates food digestion,
energy metabolism, inflammatory response, systemic immunity, intestinal motility, and nutrient
absorption, memory, and learning (Cristofori et al. 2021).

The gut-brain axis is a bidirectional communication network between the brain and GIT. The
nervous system (autonomic and enteric systems), endocrine system, immune system (by
producing cytokines and chemokines from both peripheral and central infiltrating immune cells),
and neurotransmitters cooperate to regulate digestion, cognition, learning, and anxiety
(Goralezyk-Binkowska et al. 2022).

Dysbiosis refers to an imbalance in the gut microbiota, where the community of microbes is
disrupted, leading to a predominance of pathogenic species over beneficial ones (Cristofori et al.
2021). It may disrupt the communication between the gut and the brain, altering stress response
pathways (Goralczyk-Binkowska et al. 2022). This dysfunction can exacerbate psychological
stress and lead to increased gastric acid secretion, further contributing to ulcer formation (Karl
et al. 2018).

Normally, there is a balance between the protective mucosal defense factors (e.g., mucus
barrier, bicarbonate secretion, prostaglandins, and normal blood flow, cell renewal,
endogenous antioxidants, and nitric oxide) and damaging factors (e.g., Helicobacter pylori
infection, acid plus pepsin, stress, free radicals, nonsteroidal anti-inflammatory drugs,
smoking, and alcoholism). Peptic ulcers develop when aggressive factors overcome the
protective mechanisms (Isik et al. 2024). It is the most common GIT disease and is a serious
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medical problem that causes morbidity and mortality despite therapeutic intervention
(Périco et al. 2020).

Stress ulcers are acute mucosal lesions that occur in the GIT, primarily in the stomach and
duodenum, due to physiological stress (Karl et al. 2018). Stressors may be sepsis, shock, serious
bacterial infections, burns (of more than 35% of the total body surface), trauma, organ failure,
postoperative and psychological conditions (Isik et al. 2024).

The development of stress ulcers can be explained through several interrelated mechanisms:
Decreased gastric blood flow is due to vasoconstriction (mediated by the alpha-adrenergic
nervous system, angiotensin I, and the neuroendocrine system) or to hypotension. The resulting
ischemia causes decreased secretion of bicarbonate in the stomach and duodenum, decreased
mucosal proliferation, and increased permeability of the gastric epithelium. Reperfusion damage
leads to the formation of reactive oxygen species levels, leading to oxidative damage (Popovic
etal. 2023).

Stress may increase the secretion of gastric acid and pepsin, damaging the gastric mucosa.
Acid secretion is increased by stress-induced elevation of acetylcholine (ACh) and histamine
levels (Martinez-Augustin et al. 2000).

Decreased protective mechanisms of the gastric lining (including mucus and bicarbonate
secretion) may be compromised during stress. Decreased bicarbonate secretion allows gastric acid to
damage the epithelium, as hydrogen ions diffuse into an epithelium made more permeable by
ischemia, resulting in intramural acidosis, cell death, and ulceration (Jia et al. 2023).

Decreased gastric motility may, in theory, facilitate bile reflux and breakdown of the mucosal
barrier (Isik et al. 2024). Activation of the sympathetic nervous system and the neurohormonal
system, triggered by stress, in turn causes decreased gastric motility, decreased gastric blood
flow, and decreased bicarbonate secretion (Martinou et al. 2022).

There is a link between gut microbiota and stress ulcers, but the exact mechanisms underlying
the role of gut microbiota in this condition remain unclear. According to this review's hypothesis,
gut microbiota homeostasis is crucial for preventing and treating stress ulcers, especially through
neurotransmitter activity. Therefore, this study was designed to understand the link between gut
bacteria and stress response neurotransmitters.

Therefore, the purpose of this review is to synthesize evidence on how gut microbiota and
neurotransmitter signaling interact in stress-induced mucosal injury, with the aim of identifying
novel mechanistic insights and potential therapeutic strategies targeting the gut—brain axis.

Methods

Role of microbiota-gut-brain axis in prevention of stress ulcer
1. Maintains GIT mucosal integrity

One of the key ways in which gut microbiota influences stress ulcers is through the
regulation of gut barrier function. It produces by modulating immunity, producing short-
chain fatty acids (SCFAs), and influencing the production of mucous and antimicrobial
peptides (Li et al. 2024). Beneficial bacteria such as Lactobacillus and Bifidobacterium
species help in creating a protective barrier that shields the mucosal lining from pathogens
and inflammatory stimuli (Tremblay et al. 2021). Disruption of the gut barrier can lead to
increased permeability (leaky gut), allowing harmful substances such as bacteria and toxins
to enter the bloodstream and exacerbating the inflammatory response, thereby increasing the
risk of mucosal injury and ulceration. Imbalances in intestinal flora can impair mucosal
regeneration and repair (Talarico et al. 2024).

2. Immune activation

The gut is an immunological organ that acts as a protective barrier between the internal
biological environment and infections originating from the outside (Talarico et al. 2024).
Gut microbiota secretes cytokines and other immunological chemicals that play a role in
stress-induced mucosal damage (Houser & Tansey 2017). Studies have shown that stress
can alter the balance between pro-inflammatory and anti-inflammatory cytokines in the gut,
leading to increased levels of cytokines such as interleukin-1p (IL-1pB), tumor necrosis
factor-alpha (TNF-a), and IL-6 (Tremblay et al. 2021). These cytokines can disrupt the
intestinal epithelial barrier, promote mucosal inflammation, and contribute to the
development of GIT disorders (Wu et al. 2023). This inflammation can be exacerbated by
dysbiosis, leading to increased vulnerability to ulceration. Dysbiotic bacteria can also
produce toxins that contribute to inflammation and mucosal injury, promoting ulcer
formation (Houser & Tansey 2017).
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3. Microbial Metabolites (Table 1)

Microbial metabolites such as SCFAs, tryptophan, and bile acid (BA) can cross the blood-brain
barrier (BBB). SCFAs are produced by the fermentation of dietary fiber by gut bacteria and have been
shown to have anti-inflammatory and protective effects on the gut mucosa. Studies have shown that
stress can alter the production of SCFAs in the gut, leading to dysbiosis and impairment of mucosal
integrity (Tremblay et al. 2021). Dysbiosis can reduce the production of SCFAs, compromising
mucosal repair and increasing vulnerability to ulceration (Li et al. 2024).

They stimulate the secretion of noradrenaline (NE), dopamine, serotonin (5-HT), and
neuropeptide Y (NPY), which further regulates neuroinflammation (Talarico et al. 2024). They
are essential for the growth of microglia and BBB integrity (Iftikhar et al. 2020).

Gut microbiota plays a vital role in defending against excessive oxidative stress through
regulating the production of SCFAs and antioxidant enzymes (Sun et al. 2024).

A necessary amino acid, tryptophan is a building block of several physiologically active
substances, including the neurotransmitter 5-HT (Wang et al. 2020). Tryptamine and indoles are
only two of the many tryptophan metabolites that the gut microbiota produces (Rothhammer et
al. 2018). This can affect astrocyte transcriptional programs and reduce central nervous system
inflammation (Kennedy et al. 2017). Indoles control neuronal growth, differentiation, and neuro-
depressive-like effects on behavior (Kaur et al. 2019).

Liver and brain produce BA that can cross the BBB. It influences cognition, memory, and
motor skills (Han et al. 2021). It plays a role in the modulation of cortisol production through
inhibiting corticotropin-releasing hormone (CRH) release (McMillin & DeMorrow 2016).

Microbial neurotransmitters (Table 1)

They are composed of two types: small-molecule neurotransmitters and large-molecule
neuromodulators. Small-molecule neurotransmitters include monoamines (e.g.,
epinephrine, NE, dopamine, and 5-HT), amino acids [e.g., glutamate and y-aminobutyric
acid (GABA)], glucocorticoids, and ACh. Large-molecule neuromodulators include
neuropeptides, e.g., CRH, orexin, vasoactive intestinal peptide (VIP), and substance P. The
need for multiple mediators in the stress response system arises from the complexity and
variability of stressors that organisms encounter (Teleanu et al. 2022). Dysregulation of
these chemicals due to stress can impair gut function, increase gastric acid secretion, and
contribute to ulcer development (Strandwitz 2018).

1. Monoamines

Through the enzymatic activity of aromatic amino acid decarboxylase, intestinal bacteria create
dopamine (Liu et al. 2021). Most dopamine peripherally is produced from the gut, and gut
bacteria can control peripheral dopamine levels (Jia et al. 2023).

NE is made from dopamine. Epinephrine and NE are involved in the rapid stress response.
Epinephrine ensures adequate energy supply through glycogen and fatty acid mobilization, while
NE is vital for maintaining sympathetic tone and behavioral responses to stress (Baik 2020).
Both hormones can supply sufficient blood to reach the brain, muscles, and lungs to deal with
the situation (Privitera et al. 2024). It has a role in sensation, cognition, and attention and appetite
regulation (Borodovitsyna et al. 2017). In GIT, they increase gastric acid production and tighten
the gut barrier, which can contribute to mucosal damage and ulcer formation. Activation of the
sympathetic nervous system can release NE, resulting in decreased blood flow to the gastric
mucosa, thereby impairing its ability to heal and maintain integrity (Sgambato et al. 2016). In
addition, NE can modulate energy intake, thermal homeostasis, and gut motility (Rusch et al.
2023).

Dopamine has functions in motivation, memory, mood, attention, risk assessment, and
decision-making. After being exposed to stress, the dopaminergic reward system must be
regulated to monitor and choose the best coping mechanism for stressful situations (Belujon &
Grace 2015). In GIT, it stimulates secretions and mucosal blood flow and inhibits gut motility.
It has a protective role against gastroduodenal ulcers (Belujon & Grace 2017). Stress-induced
dysbiosis may decrease dopamine production, affecting both GI motility, blood flow, and
mucosal barrier function (Baik 2020).

Most 5-HT is formed in GIT. Gut bacteria stimulate the intestine to secrete 5-HT (Strandwitz
2018). It does not cross the BBB but increases BBB permeability, which indirectly impacts
brain function. Sleep, anxiety, mood, hunger, sickness, social and sexual behavior are all
regulated by it (Baik 2020). 5-HT has an anti-immunity property. It inhibits the expression
of major histocompatibility complex class II and the ability of macrophages to present
antigens. It stimulates the generation of pro-inflammatory cytokines (Wan et al. 2020). In
GIT, it influences motility and mucus and bicarbonate secretions (Jia et al. 2023). Under
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stress, dysbiosis reduces 5-HT levels, impairing mucosal integrity and enhancing
vulnerability to inflammation and ulceration (Strandwitz 2018).

2. Amino acids

Excitatory glutamate is secreted from brain cells and neurons (Brekke et al. 2016). Acute stress
stimulates glutamate secretion by the activation of glucocorticoid receptors (Pal 2021). Its
function is learning, memory, appetite, and right concentration in the right places at the right
time (Bailey & Cryan 2017). In GIT, it influences motility, endocrine function, mucus, and
bicarbonate secretions. Furthermore, glutamate stimulates 5-HT secretion by enteroendocrine
cells (San Gabriel & Uneyama 2013). Preperfusion of L-glutamate prevented acid-induced
cellular injury, suggesting that L-glutamate protects the mucosa by enhancing mucosal defenses
(Akiba et al. 2009).

By antibiotic treatment, NMDA receptor levels decrease, so intestinal flora may be involved
in the metabolic activity of NMDA (Bailey & Cryan 2017).

Parabacteroides, Eubacterium, and Bifidobacterium produce GABA (Woo et al. 2021).
In addition to controlling heart rate and blood pressure, GABA is essential for several GIT
processes, including inflammation, motility, and gastric emptying (Wu & Sun 2015). It also
has a significant impact on immunological response, anxiety, depressive symptoms, and
pain perception (Chen et al. 2021). Stress-induced dysbiosis may reduce GABA levels,
impairing the mucosal barrier and exacerbating inflammation in the GI tract (Szpregiel et
al. 2021). Reduced GABA signaling under stress can lead to heightened anxiety and stress
responses, which may exacerbate gastric mucosal damage and increase ulcer risk
(Strandwitz 2018).

3. Glucocorticoids

Glucocorticoids are one form of long-term stress adaptation (Kageyama et al. 2021). Normal
cortisol secretion protects the body from stress by distributing salt and water between cells
and fluid in tissues, increasing the vascular response to circulating catecholamines
(Keskitalo et al. 2021). Dysbiosis elevates cortisol levels, which can activate mast cells.
They secrete tryptase, proteases, proinflammatory cytokines, heparin, and histamine from
these granules. Histamine secreted from mast cells, which plays an important role in the
pathogenesis of stress-related diseases, activates the H2 receptor in parietal cells, leading to
excessive secretion of stomach acid and may cause peptic ulcers (Isik et al. 2024). Cortisol
also alters the gut environment, promoting the growth of pathogenic bacteria over beneficial
ones (Périco et al. 2020).

4. Acetylcholine (ACh)

ACh is a parasympathetic neurotransmitter that is produced in reaction to stress (Kageyama et
al. 2021). ACh helps in both acute physiological responses to stress and memories of stressful
events that may have an impact on long-term behavioral patterns (Mineur & Picciotto 2021).

In GIT, it is a metabolite derived from bacteria (Martinez-Augustin et al. 2000). It regulates
GIT secretions and motilities, and enteric neurotransmission. Also, it is an important
neuromodulator involved in stress coding, memories, and cognition (Popovic et al. 2023). Stress
can lead to dysregulation in ACh signaling, resulting in gut motility issues and contributing to
the development of ulcers (Kageyama et al. 2021).

5. Neuropeptides (Table 1)

Enteroendocrine cells (EECs) in the gut produce various neuropeptides in response to
bacterial by-products. These neuropeptides, such as NPY, peptide YY (PYY),
cholecystokinin (CCK), glucagon-like peptide-1 and -2, and substance P, can influence gut
motility, secretion, and even emotional regulation by diffusing into the bloodstream or
acting locally on the enteric nervous system (ENS) (Cani & Knauf 2016). In GIT, increased
levels of substance P have been associated with heightened pain sensitivity and
inflammation in the gut, potentially exacerbating mucosal injury and ulceration during
stressful situations (Iftikhar et al. 2020).

Under moderate stress, CRH is used to adjust humoral and behavioral reactions and
memory (Kageyama et al. 2021), while, under severe stress, it causes hyperexcitability
and seizures (Leistner & Menke 2020). In the GIT, colon and ileum cells are the primary
sources of CRH secretion (Liu et al. 2016). According to Rodiflo-Janeiro et al. (2015), it
slowed down gastric emptying, stimulated colonic motility, and damaged the intestinal
epithelial barrier. These effects were not reliant on a stressful environment (Yang et al.
2016).
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Table 1. Role of gut microbiota neurotransmitters in prevention stress ulcer

Category Item Mechanism Mechanism of Action References
Regulates GI motility, blood flow, and Increase in dopamine Liu et al. 2021; Jia et
. . . . enhances mucosal .
Monoamines Dopamine mucosal barrier; protects against . al. 2023; Belujon &
protection and reduces
gastroduodenal ulcers. ulcer risk Grace 2017
Norepinenhrin Tightens gut barrier; modulates energy N;Eil(rilcrea;s:is iastrtlc Baik 2020; Privitera
orepiephnne intake, thermal homeostasis, and gut c1d secretion bu et al. 2024; Rusch et
(NE) motilit reduces mucosal blood al. 2023
Y. flow under stress. ’
Epinephrine mobilizes
_ _ Ensures energy sup[_)ly via glycogen energy but may Baik 2020; Privitera
Epinephrine = and fatty acid mobilization; involved = exacerbate mucosal ctal. 2024
in rapid stress response. damage under ’
prolonged stress.
Regulates sleep, mood, anxiety, and .
Serotonin GI motility; increases BBB re dzzzzeéfclons;-iTair Strandwitz 2018;
(5-HT) permeability; stress-induced dysbiosis and increases ulcgr Baik 2020; Wan et
reduces 5-HT, impairing mucosal al. 2020

Amino Acids Glutamate

GABA

Glucocorticoids Cortisol

integrity.

Influences learning, memory, and GI
motility; stimulates 5-HT secretion;
protects mucosa by boosting mucosal
defenses.

Regulates heart rate, blood pressure,
GI motility, and inflammation; stress-
induced dysbiosis reduces GABA,
exacerbating inflammation.

Long-term stress adaptation; cortisol
protects against stress but dysbiosis
increases cortisol.

Regulates GI secretion, motility, and

susceptibility.

Glutamate enhances =~ Brekke et al. 2016;
mucosal defenses and =~ Bailey & Cryan
reduces acid-induced = 2017; Akiba et al.

damage. 2009
Decrease in GABA
exacerbates
inflammation and
mucosal damage.

Woo et al. 2021; Wu
& Sun 2015;
Szpregiel et al. 2021

Increased cortisol Kageyama et al.
promotes pathogenic =~ 2021; Keskitalo et
bacterial growth and  al. 2021; Périco et

mucosal damage. al. 2020

Dysregulation of ACh ~ Kageyama et al.

Acetvicholine Acetylcholine enteric neurotransmission; stress- signaling disrupts gut  2021; Popovic et al.
¥ (ACh) induced dysregulation contributes to = motility and mucosal 2023; Martinez-
ulcers. integrity. Augustin et al. 2000

Neuropeptides CRH

Slows gastric emptying, stimulates
colonic motility, and damages
intestinal epithelial barrier.

Regulates intestinal permeability and
immune cell activation; promotes

CRH increases Kageyama et al.
intestinal permeability 2021; Rodifo-
and mucosal damage. Janeiro et al. 2015

Orexin enhances

. Couvineau et al.
mucosal regeneration

2021; Grafe &

Orexin mucosal regeneration and gastric a::rr?(l)(t)ifld ﬂﬁ:z; Bhatnagar 2018;
blood flow for ulcer healing. p g Mediavilla 2020
healing.
) Regulate_s gastric secretion and gut Ghrelin promotes Akalu et al. 2020
Ghrelin motility; aids in ulcer healing through ~ mucosal repair and L
. . . Mediavilla 2020
mucosal regeneration and blood flow. reduces inflammation.
Released in response to stress; NPY reduces stress- Zhang et al. 2024:
regulates hunger, pain, mood, and induced mucosal .
NPY . . Lach et al. 2018;
memory; has antibacterial and damage and
. . . . Henry et al. 2017
neuroprotective properties. inflammation.
Regulates food intake and memory; PYY mf)dulgtes gut-
. . brain signaling and Lach et al. 2018;
PYY penetrates BBB to influence brain .
. reduces stress-induced ~ Henry et al. 2017
function.
mucosal damage.
. ., . CCK promotes ulcer
Regulates pain, cognition, and feeding . .
CCK behavior; accelerates ulcer healing via healing through Bauer et al. 2016;

Glucagon-like

somatostatin release and hyperemia.

Inhibits gastric movement and insulin
secretion; has anti-inflammatory and

hyperemia and West et al. 2003

somatostatin release.

GLP enhances Abdalqadir & Adeli
mucosal blood flow  2022; Diz-Chaves et

peptide (GLP)  anti-apoptotic functions; microbial and reduces al. 2020; Zeng et al.
metabolites increase GLP secretion. inflammation. 2024
Reduces vascular sensitivity to NE
and angiotensin II; protects stomach =~ VIP reduces oxidative Withana &
VIP tissue from lipid peroxidation and stress and protects Castorina 2023;

ulcers; has anti-inflammatory and
antioxidant functions.

mucosal integrity. Tungel et al. 1998

Excitatory neuropeptides known as orexins, or hypocretins, are produced from the prepro-

orexin precursor and are found in cells located in the lateral and posterior hypothalamus regions.
Also, orexin has been detected in neurons and mucosa of all gut regions, of the enteric nervous
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system, and in the enteroendocrine gut cells in animals and humans (Couvineau et al. 2021).
Ghrelin — the hunger hormone — is produced and released mainly by the stomach, with small
amounts also released by the small intestine, pancreas, and brain. It can cross the BBB (Akalu et
al. 2020). Orexin and ghrelin have been shown to regulate the stress response. The acute
behavioral and neuroendocrine response to stress is enhanced by orexin. It regulates intestinal
permeability, prevents the activation of immune cells, and protects against systemic and central
inflammation (Grafe & Bhatnagar 2018). Ghrelin has a role in reward processes, mood, memory,
learning, and stress response. It also has a role in the stimulation of gastric and pancreatic
secretions and gut motility (Akalu et al. 2020).

Ghrelin and orexin contribute to the process of chronic gastric ulcer healing, cooperating
with nitric oxide and sensory afferent nerve endings releasing vasoactive neuropeptide
calcitonin gene-related peptide. Orexin has a protective effect via the vagal pathway.
Furthermore, it plays an essential role in the healing process of chronic gastric ulcers by
activating the gastric blood flow at the ulcer margin and mucosal regeneration (Mediavilla
2020).

The control of hunger, pain, emotion, mood, cognition, stress, intake, and energy balance are
all impacted by NPY. It is released in response to stress and can have anxiolytic effects (Zhang
et al. 2024). NPY is also produced in the GIT (Lach et al. 2018). PYY is mostly secreted by
colon and ileum cells. while pancreatic polypeptide (PP) is produced by the vagus nerve and is
released in response to food. By using transmembrane diffusion, PYY and PP may both penetrate
the BBB and attach to cognate receptors in the postrema region (Henry et al. 2017). NPY was
formed in the brain from medulla to cortex. Its receptors (Y1, Y2, Y3, Y4, Y5) are expressed on
brain neurons, gut primary afferents, immunological cells, sympathetic neurons, and the
hypothalamus (Lach et al. 2018). The NPY family has antibacterial, neuroprotection,
neurogenesis, and neuroinflammation properties. It has a role in memory retention, control of
blood pressure, and regulation of food intake (Henry et al. 2017).

CCK has a role in pain, cognition, anxiety, depression, and feeding behavior (Bauer et al.
2016). By modifying the makeup of the gut environment and food digestion, gut microbiota can
affect the production of CCK. Certain bacterial species may enhance the release of CCK in
response to dietary fats and proteins, thereby promoting satiety and digestive processes (Wang
et al. 2020). CCK accelerates ulcer healing by the mechanism involving upregulation of specific
CCK-A receptors, enhancement of somatostatin release, stimulation of sensory nerves, and
hyperemia in the ulcer area, possibly mediated by nitric oxide (West et al. 2003).

Glucagon-like peptide 1 (GLP-1) — a hormone stimulating glucose-dependent insulin
secretion — is also involved in the modulation of the stress response (Abdalqadir and Adeli 2022).
In the gut, it inhibits both gastric movements and insulin secretion (Diz-Chaves et al. 2020). In
the brain, it has anti-inflammatory and anti-apoptosis functions (Stenman et al. 2015). Microbial
metabolites (e.g., SCFAs and lipopolysaccharide) increase glucagon-like peptide secretion (Zeng
et al. 2024). GLP-2 protects the gastric mucosa by increasing gastric mucosal blood flow and
regulating the linoleic acid metabolic pathway (Zhang et al. 2022).

VIP is one of the regulators of the stress response. It appears to activate factors responsible
for sustained responses to stressors rather than immediate reactions. It is a potent vasodilator
agent and reduces the sensitivity of the aorta smooth muscle to NE and angiotensin II (Withana
& Castorina 2023). Gut microbiota is essential for normal myenteric VIP levels. This effect is
dependent on microbiota-innate immune system crosstalk and enteric glia cells. VIP prevented
stress-induced ulcers and mast cell degranulation and protected gastric tissue from lipid
peroxidation. It is an anti-inflammatory and antioxidant agent (Tungel et al. 1998).

Potential therapeutic strategies for stress ulcer targeting the microbiota-gut-brain axis
dietary modification

In critically ill patients, stress ulcers are common due to prolonged mechanical ventilation,
hemodynamic instability, and the use of medications that affect gastric mucosal integrity. Dietary
strategies should focus on minimizing acid hypersecretion, supporting mucosal protection, and
reducing systemic inflammation (Sheneni et al. 2023).

The Mediterranean diet, known for its antioxidant, anti-inflammatory, and neuroprotective
properties, may benefit critically ill patients by enhancing gut microbial diversity and short-chain
fatty acid (SCFA) production. However, modifications are needed to accommodate enteral
feeding and patient-specific nutritional needs (Sofi et al. 2013). High-fiber diets, including fruits
(apple, banana, mango, melon, and papaya), vegetables (spinach, carrot, bean, beet, kale, and
leek) (Rahantasoa et al. 2020), cereals (brown rice, bulgur, millet, oatmeal), and legumes (bean
soup, lentils, chickpeas, and soybean), promote mucin formation and gut barrier integrity. Fiber
and essential fatty acids help mitigate stress-induced peptic ulcers and support immune function
(Kulshreshtha et al. 2017).
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For critically ill patients, diets combining elements of the Mediterranean and Dietary
Approaches to Stop Hypertension (DASH) diets, rich in vegetables, whole grains, fruits, low-fat
dairy, and lean protein, may offer additional protective effects against ulcer formation and
improve clinical outcomes (Prasad 2009). Micronutrients such as zinc, selenium, vitamin C, -
carotene, and vitamin E play critical roles in wound healing and oxidative stress reduction. Zinc
promotes mucosal repair and immune function (Prasad 2009), selenium enhances ulcer healing
and infection control, and B-carotene and vitamin C contribute to gastric mucosal protection
(Kulshreshtha et al. 2017). Vitamin E aids in ulcer treatment and enhances mucosal recovery
(Yousafet al. 2014).

Intermittent fasting may have potential benefits in critically ill patients by modulating gut
microbiota, reducing systemic inflammation, and decreasing gastric acid secretion. However, its
application requires careful consideration in ICU settings (Paoli et al. 2019).

Prebiotics

Prebiotics support gut health by promoting the growth of beneficial bacteria, which is
particularly crucial for critically ill patients at high risk of gut dysbiosis (Al-garni et al. 2021).

Yeast beta-glucan enhances SCFA production, restores gut microbiota balance, and
reduces systemic and neuroinflammation. It also promotes epithelial hyperplasia, ulcer
healing, fibroblast proliferation, and angiogenesis (Medeiros et al. 2012). Mannan
oligosaccharides stimulate SCFA synthesis while reducing oxidative stress and pro-
inflammatory cytokines (TNF-a, IL-6, IL-10), thereby protecting the gastric mucosa in
critically ill patients (Ashaolu 2020).

Lactulose plays a crucial role in modulating gut microbiota composition, reducing
inflammation, and improving insulin sensitivity. Additionally, it inhibits inflammatory
carcinogenesis and restores intestinal barrier integrity (Hiraishi et al. 2022). Ferulic acid exerts
potent anti-inflammatory and antioxidant effects, supporting nerve growth factor production and
reinforcing gastric mucosal integrity. By blocking neutrophil infiltration and lipid peroxidation,
it has gastroprotective properties that are particularly relevant in ICU patients with stress ulcers
(Ermis et al. 2023). Despite these benefits, further research is necessary to standardize prebiotic
use in clinical practice, considering individual factors such as diet, age, and comorbidities
(Barbosa & Vieira-Coelho 2020).

Probiotics

Probiotics modulate the gut microbiota toward a favorable balance, making them an essential
adjunct therapy for stress ulcers in critically ill patients (Al-gami et al. 2021). Lactobacillus and
Bifidobacterium, the most widely studied probiotics, regulate the host immune response, reduce
inflammation, prevent pathogen overgrowth, and enhance antioxidant enzyme activity (Paoli et
al. 2019; Al-garni et al. 2021).

In critically ill patients, probiotics help restore mucosal integrity by inhibiting apoptosis,
stabilizing mast cells, and preventing excessive activation of the hypothalamic-pituitary-adrenal
(HPA) axis, which contributes to gastric mucosal protection (Mal et al. 2024). Combining
probiotics with prebiotics enhances their therapeutic potential, promoting epithelial cell
proliferation, particularly at ulcerated margins (You et al. 2022).

Probiotic and prebiotic therapies have shown efficacy in reducing oxidative stress, pro-
inflammatory cytokines, and gastric mucosal injury. Studies suggest that probiotics may be the
most effective therapeutic group for stress ulcer prevention in ICU patients (Al-garni et al. 2021).
However, the harsh physiological conditions in critically ill patients, including acidic gastric pH,
mechanical stress, and digestive enzymes, may limit probiotic colonization in the gut. Further
research is needed to optimize probiotic strains, dosages, and delivery methods tailored to ICU
settings (Khoder et al. 2016).

Fecal microbiota transplantation (FMT)

FMT is an emerging therapy for restoring gut microbiota diversity and function in critically ill
patients with severe dysbiosis (Allegretti et al. 2019). It involves transplanting prescreened donor
feces via colonoscopy, enema, or capsule to enhance SCFA production and reestablish gut
microbial homeostasis (Mullish et al. 2018).

In critically ill patients, FMT may support gut barrier repair, regulate mucosal immune
responses, and restore secondary bile acid metabolism, which plays a crucial role in
gastrointestinal health (Khoruts & Sadowsky 2016). However, concerns regarding safety,
infection risk, and treatment standardization require further investigation before widespread
clinical implementation (Feng et al. 2023).
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Table 2. Possible treatment approaches for stress ulcers that focus on the gut-brain-microbiota axis

Category Item Mechanism Notes References

Increases SCFA production;

. Promotes ulcer healin
balances anti- and pro- e,

Medeiros et al.

Prebiotics Yeast Beta-Glucan inflammatory bacteria; reduces fibroblast prollferz}tlon, 2012
. . and angiogenesis.
neuroinflammation.
Enhances SCFA synthesis; reduces
_ MannanA ) oxidative stress _and pro- Reduc_es gastric injury Ashaolu 2020
Oligosaccharides  inflammatory cytokines (TNF-a, and inflammation.
IL-6, IL-10).

Reduces neuroinflammation;
promotes insulin sensitivity;
restores gut microbiota
composition.

Inhibits infl L

n 1b1.sm ammatow Hiraishi et al.
carcinogenesis and 2022

reduces inflammation.

Lactulose

Anti-inflammatory and antioxidant
effects; increases nerve growth  Protects gastric mucosa
Ferulic Acid factor and brain-derived and maintains Ermis et al. 2023
neurotrophic factor; blocks NF-kB, structural integrity.
reducing tissue damage.

Modulates i ; .
odu/ates ummune response, Stabilizes mast cells

reduces inflammation and reactive Paoli et al. 2019;

Lactobacillus & and protects gastric

Probiotics Bifidobacterium oxygen species; enhaqceg ) mucosa from stress- Al-garni et al.
antioxidant enzymes and inhibits . 2021
. induced damage.
apoptosis.
. N . Administ i .
Restores gut microbial diversity dministered via Allegretti et al.

Fecal Microbiota colonoscopy, enema, or

and SCFA production; repairs gut 2019; Mullish et

Transplantation FMT barrier and restores secondary bile capsule; safer al. 2018; Khoruts
(FMT) . R concerns require
acid metabolism. & Sadowsky 2016
further research.
Conclusion

The gut microbiota affects stress ulcers through multiple mechanisms, including the generation
of neurotransmitters and metabolites, immune activation, and repair of intestinal damage.
Potential treatment approaches that could influence gut microbiota and stress ulcers include diet,
probiotic and prebiotic supplements, and fecal transplantation. The gut microbiota may be a
future preventive and curative treatment for stress ulcers.
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