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Abstract
Introduction: Every year the importance of the normal functioning of the endothelial layer of the vascular wall in 
maintaining the health of the body becomes more and more obvious.

The physiological role of the endothelium: The endothelium is a metabolically active organ actively involved in the 
regulation of hemostasis, modulation of inflammation, maintenance of hemovascular homeostasis, regulation of angio-
genesis, vascular tone, and permeability.

Risk factors for the development of endothelial dysfunction: Currently, insufficient bioavailability of nitric oxide is 
considered the most significant risk factor for endothelial dysfunction.

Mechanisms of development of endothelial dysfunction: The genesis of endothelial dysfunction is a multifactorial 
process. Among various complex mechanisms, this review examines oxidative stress, inflammation, hyperglycemia, 
vitamin D deficiency, dyslipidemia, excess visceral fat, hyperhomocysteinemia, hyperuricemia, as well as primary 
genetic defect of endotheliocytes, as the most common causes in the population underlying the development of endo-
thelial dysfunction.

Markers of endothelial dysfunction in various diseases: This article discusses the main biomarkers of endothelial 
dysfunction currently used, as well as promising biomarkers in the future for laboratory diagnosis of this pathology.

Therapeutic strategies: Therapeutic approaches to the endothelium in order to prevent or reduce a degree of damage 
to the vascular wall are briefly described.

Conclusion: Endothelial dysfunction is a typical pathological process involved in the pathogenesis of many diseases. 
Thus, pharmacological agents with endothelioprotective properties can provide more therapeutic benefits than a drug 
without such an effect.
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Introduction
Since the discovery in 1980 that acetylcholine-mediat-
ed vasodilation requires the presence of endothelial cells 
(Furchgott and Zawadzki 1980), the importance of the 
endothelial layer of the vascular wall for vascular ho-
meostasis has become increasingly apparent. Endothelial 
dysfunction is an integral part of the pathophysiology of 
various diseases, including hypertension, atherosclerosis, 
chronic heart failure, coronary heart disease (CHD), diabe-
tes mellitus, chronic renal failure, oncological diseases and 
even mental disorders. Therefore, in order to develop ther-
apeutic strategies, it is necessary to understand the key fac-
tors involved in maintaining endothelial function and the 
signaling pathways affecting endothelial dysfunction (ED).

The purpose of this article is to describe the function 
and main signaling pathways of oxidative stress, inflam-
matory factors, as well as metabolic disorders leading to 
the development of ED, to consider currently available 
biochemical markers of ED, as well as promising ther-
apeutic strategies for the prevention and treatment of 
this pathology.

The physiological role of the 
endothelium

Blood vessels consist of connective tissue, fibroblasts, 
endothelial cells, and vascular smooth muscle cells. The 
inner surface of the blood vessel wall is covered with en-
dothelium, which is a semi-permeable continuous mono-
layer of flat cells of mesenchymal origin between the 
bloodstream and the vessel wall. Due to dense specialized 
intercellular connections, the endothelium forms a barri-
er that selectively restricts the movement of macromole-
cules (Rahimi 2017). The barrier plays an important role 
in maintaining vascular tone, fluid homeostasis, and body 
protection (Zhang et al. 2018).

For many years, the endothelium was considered 
only to be a cellular barrier. But numerous studies have 
shown a much more complex role of the endothelium. 
The endothelium is not only a highly selective barrier, but 
also a metabolically active system, not least involved in 
maintaining vascular homeostasis, regulating the balance 
between vasodilation and vasoconstriction (Kasprzak et 
al. 2006). Vasoconstriction is provided by the following 
factors: endothelin-1 (ET-1), angiotensin II, prostaglan-
din H2, and thromboxane A2 (Bonetti et al. 2003). Nitric 
oxide (NO) (formerly known as endothelial relaxation 
factor), endothelin depolarization factor (EDHF), prosta-
cyclin or natriuretic peptides are responsible for vasodila-
tion (Busse and Fleming 2006; Moncada and Higgs 2006; 
Spieker et al. 2006). Vasodilating endothelial factors also 
have antiaggregational properties, inhibit the formation 
of blood clots, vascular stenosis and, in the case of NO/
cGMP (cyclic guanosine monophosphate), also prevent 
myocardial hypertrophy (Ritchie et al. 2009).

Not so long ago, hydrogen sulfide (H2S) was identi-
fied as a new vasodilator produced by endothelial cells 
(Yang et al. 2008) that acts in conjunction with NO 
(Cortese-Krott et al. 2015; Yuan et al. 2015). Regula-
tion of vascular tone by H2S is carried out both by direct 
action on vascular smooth muscle cells and by endothe-
lium-dependent pathway (Wang et al. 2015). The main 
mechanism of H2S-induced vasodilation is associated 
with the activation of ATP-sensitive K+(ATP) channels 
of vascular smooth muscle (Zhao et al. 2001). The in-
volvement of K+ATP channels in the H2S-mediated regu-
lation of vascular tone is further confirmed by the effects 
of vasodilation blockade by the K+ATP channel inhibitor 
glibenclamide (Webb et al. 2008). In addition, H2S poten-
tiates the NO-mediated vasodilating effect by inhibiting 
phosphodiesterase-5 (PDE-5), prolonging the half-life of 
cGMP, which is a key mediator in vasoactive NO signals 
(Bucci et al. 2010).

Under physiological conditions, due to the controlled 
synthesis and release of biologically active substances 
(Table 1) (Melnikova and Makarova 2015), the endo-
thelium has the ability to maintain a balance between its 
multidirectional functions: regulation of the hemostasis 
system, modulation of inflammation, maintenance of 
hemovascular homeostasis, regulation of angiogenesis, 
vascular tone, and permeability.

The imbalance of these diverse vasoactive factors is 
fundamental to the development of ED (Frey et al. 2009; 
Tarafdar and Pula 2018). According to some data, glyco-
calyx plays an equally important role, located on the sur-
face of endothelial cells facing the vascular bed and par-
ticipating in the adhesion of leukocytes and platelets and, 

Table 1. Factors synthesized in the endothelium determining its 
functions (Melnikova and Makarova 2015)

Group Function Biologically active substances
Factors 
affecting 
vascular 
smooth 
muscle tone

narrowing of blood 
vessels

endothelin-1, angiotensin II, 
thromboxane A2, prostaglandin H2

dilation of blood 
vessels

nitric oxide, prostacyclin, endothelin 
depolarization factor, angiotensin I, 
adrenomedullin, hydrogen sulfide

Hemostasis 
factors

prothrombogenic platelet growth factor, plasminogen 
tissue activator inhibitor, Willebrand 
factor (blood clotting factor VIII), 
angiotensin IV, endothelin-1, 
fibronectin, thrombospondin, platelet 
activation factor

antithrombogenic nitric oxide, tissue plasminogen 
activator, prostacyclin, 
thrombomodulin

Factors 
affecting 
growth and 
proliferation

stimulants endothelin-1, angiotensin II, 
superoxide radicals, endothelial 
growth factor

inhibitors nitric oxide, prostacyclin, C-type 
natriuretic peptide, heparin-like 
growth inhibitors

Factors 
affecting 
inflammation

pro-inflammatory tumor necrosis factor alpha, 
superoxide radicals, C-reactive 
protein

anti-inflammatory nitric oxide
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consequently, in the function of the endothelium (Van den 
Berg et al. 2006). It should be emphasized that areas of 
the damaged endothelium can be renewed thanks to circu-
lating endothelial progenitor cells (EPC), the qualitative 
and quantitative indicators of which significantly affect 
the outcomes and prognoses of cardiovascular diseases 
(Werner et al. 2005) and the functioning of the endotheli-
um as a whole (Hill et al. 2003).

According to many researchers, just assessing the 
function of the endothelium may not be enough, since 
the functioning of the vascular wall cannot be considered 
in isolation from the functional state of the smooth myo-
cytes that make it up (for example, a degree of activity of 
soluble guanylyl cyclase) (Stasch et al. 2006). Moreover, 
it is currently proven that the adipose tissue surrounding 
the vessels contributes to vascular homeostasis by pro-
ducing vasoactive compounds such as adipokines, reac-
tive oxygen species (ROS) and NO (Brown et al. 2014; 
Jankovic et al. 2017).

Risk factors for ED development

The clinical characteristic of ED is a violation of en-
dothelium-dependent vasorelaxation in response to fac-
tors such as exposure to acetylcholine and bradykinin, 
or changes in blood flow. Although the mechanisms 
leading to ED are numerous, the main one, neverthe-
less, is a decrease in the bioavailability of NO. The 

diagram (Fig. 1) shows that the reason for a decrease 
in the bioavailability of NO may be a decrease in the 
availability of L-arginine (Schlaich et al. 2004), the ac-
cumulation of asymmetric dimethylarginine (ADMA) 
(Gamil et al. 2020), changes in the interaction with heat 
shock protein 90 (Hp90) (Ou et al. 2003), and phos-
phorylation of endothelial NO synthase (eNOS) (Smith 
and Hagen 2003), as well as an increase in NO uptake 
due to an excessive amount of ROS accumulated due to 
the activity of NADPH and xanthine oxidases (Frey et 
al. 2009; Tarafdar and Pula 2018), and the separation of 
eNOS. In addition, it should be noted that changes in 
caveolin-1 (Darblade et al. 2001), tetrahydrobiopterin 
(BH4) (Topal et al. 2004), S-glutathionylation of ENOS 
(Chen et al. 2010; Kavoussi et al. 2019), and oxidation 
of low-density lipoproteins (oxLDL) (Fleming et al. 
2005) are also involved in the separation of eNOS. It is 
important that a decrease in the expression of the eNOS 
protein also leads to a violation of the activity of eNOS 
and the production of NO, which are often observed in 
such cardiovascular diseases as atherosclerosis, acute 
myocardial infarction and heart failure in animals and 
humans (Fujii et al. 2002; Damy et al. 2004; Tonduangu 
et al. 2004).

The mechanisms underlying a decrease in the bio-
availability of nitric oxide include both a decrease in the 
production of nitric oxide and increased absorption of 
nitric oxide. A decrease in NO production may be the 
result of:

Figure 1. Mechanism of reducing the bioavailability of nitric oxide (Su 2015). Notes: NO – nitric oxide, ENOS – endothelial 
NO-synthase, CAM – calmodulin, ADMA – asymmetric dimethylarginine, DDAH – dimethylarginindimethylaminohydrolase BH4 – 
tetrahydrobiopterin, P – receptor, G – G-protein, Hsp90 – heat shock protein 90, PI3K – phosphatidylinositol-3-kinase, Akt – protein 
kinase B, NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate, SOD – superoxide dismutase, ONOO – per-
oxynitrite, O2 – superoxide, O2 – oxygen, H2O2 – hydrogen peroxide, EC – endothelial cells, MMC – smooth muscle cells (Su 2015).
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• reduced availability of L-arginine due to its defi-
ciency, disturbances in its transporter, or due to a 
combination of these phenomena;

• accumulation of ADMA, which is an endogenous 
eNOS inhibitor;

• deficiency of the BH4 cofactor or its modification;
• increases in caveolin-1, leading to a change in the 

interaction between it and eNOS;
• changes in G-proteins associated with the receptor;
• changes in the interaction of eNOS with Hsp90 due 

to changes in the content of Hsp90;
• changes in calcium-independent phosphatidylinosi-

tol-3-kinase (PI3K) / protein kinase B (Akt) – me-
diated activation of eNOS due to tyrosine or serine 
phosphorylation;

• as well as a decrease in eNOS expression as a result 
of a decrease in the transcription of the eNOS gene 
and/or a decrease in the stability of the eNOS mRNA.

Increased absorption of NO by ROS and reactive forms 
of nitrogen (RFA) may be associated with:

• separation of eNOS associated with changes in 
BH4, caveolin-1 and oxLDL;

• increased expression of NADPH and its activity;
• and increased expression and activity of xanthine 

oxidase.

The mechanisms underlying ED in various diseases 
may vary according to the factors contributing to the de-
velopment of each specific disease.

Mechanisms of ED development

Under physiological conditions, vasodilation, synthesis 
of aggregation inhibitors, coagulation and fibrinolysis 
activators, anti-adhesive substances by endothelial cells 
prevail. ED implies a violation of the production of var-
ious messengers produced by the endothelium (as well 
as smooth muscles, perivascular adipose tissue), which 
leads to a vasoconstrictor, proinflammatory and proath-
erothrombotic phenotype, leading to a violation of the 
regulation of vascular tone and vascular permeability.

The development of ED is a multifactorial process. 
Among the many complex mechanisms, oxidative stress 
is probably the most common cause underlying the devel-
opment of ED. Oxidative stress develops with excessive 
formation of free radicals and insufficient mechanisms of 
antioxidant defense systems. Most risk factors for car-
diovascular diseases also contribute to the development 
of intracellular oxidative stress and increased production 
of ROS, which contributes to the activation of NADPH 
oxidase, inactivation of NO, formation of peroxynitrite 
(ONOO-), inhibition of eNOS activity, stimulation of en-
dothelin expression, etc. (Förstermann and Münzel 2006).

Another common mechanism for the development of 
endothelial dysfunction is inflammation, and there is a 

high probability that there is a direct relationship between 
the inflammatory process and oxidative stress (Karbach et 
al. 2014). Under normal conditions, the endothelium regu-
lates vascular inflammation by releasing NO. However, the 
damaged endothelium contributes to the formation of ROS 
and thereby exacerbates vascular inflammation, which ad-
versely affects the vascular wall. Oxidative stress can in-
crease inflammation of the vascular wall, and inflammato-
ry cells increasingly secrete superoxide radicals (Karbach 
et al. 2014), potentiating oxidative stress. There are many 
inflammatory markers associated with ED. C-reactive pro-
tein (CRP) is an acute-phase inflammatory protein, which 
is released in response to various types of inflammation. 
Experimental studies have shown that CRP directly con-
tributes to the early phase of atherosclerosis due to depo-
sition on the intima, even before the appearance of mono-
cytes (Torzewski et al. 2000). In addition, CRP directly 
affects the bioavailability of NO, which leads to the devel-
opment of oxidative stress, and as a consequence of ED 
and intimal hyperplasia. CRP acts directly through a lec-
tin-like oxidized low-density lipoprotein receptor, which 
plays a crucial role in oxLDL-induced ED in human aortic 
endothelial cells (Li et al. 2004). Inflammation is also as-
sociated with overexpression of tumor necrosis factor-al-
pha (TNF-α) and interleukin-1, which contribute to the 
attachment and migration of leukocytes (Barton 2013). In 
addition, these inflammatory cytokines induce endothelial 
cells and leukocytes to express adhesion molecules such 
as vascular cell adhesion molecules (VCAM) and intercel-
lular adhesion molecules (ICAM), chemotactic monocyte 
protein-1, E-selectin, P-selectin and interleukin-6, which 
leads to increased ED (Blake and Ridker 2001).

The endothelial function can also be disrupted by in-
fectious agents and immuno-mediated damage develop-
ing due to their effects (Epstein et al. 2000). According 
to population studies, infectious agents can cause predis-
position of patients to cardiovascular diseases and their 
clinical manifestations. Viruses, such as cytomegalovirus 
and herpes simplex virus-1 and bacteria such as Chlamyd-
ia pneumoniae and Helicobacter pylori, are reported to be 
associated with the development of various forms of cor-
onary heart disease in humans (Pothineni et al. 2017). It 
was shown that the titers of immunoglobulin-G antibod-
ies to cytomegalovirus, hepatitis A virus, herpes simplex 
virus-1, Chlamydia pneumonia and Helicobacter pylori 
were independent risk factors for ED and the presence 
of coronary heart disease. Therefore, it is possible that 
due to infection with these pathogens, common signifi-
cant immunological pathways may develop, as a result 
of activation of which endothelial damage occurs and the 
development of pathological conditions mediated by ED 
(Grabczewska et al. 2006).

In light of recent events, there are more and more re-
ports that COVID-19 affects organs other than the lungs, 
primarily the heart and kidneys (Fanelli et al. 2020; Yang 
et al. 2020). Due to the tissue tropism of SARS-CoV-2 
for cells expressing angiotensin converting enzyme 2 
(APF2), another major important target for infection is the 

https://pubchem.ncbi.nlm.nih.gov/compound/Arginine
https://pubchem.ncbi.nlm.nih.gov/compound/N_N-dimethylarginine
https://pubchem.ncbi.nlm.nih.gov/compound/Nitric-oxide
https://pubchem.ncbi.nlm.nih.gov/compound/Nitric-oxide
https://pubchem.ncbi.nlm.nih.gov/compound/Nitric-oxide


Research Results in Pharmacology 8(4): 115–139 119

vascular endothelium (Monteil et al. 2020). Studies show 
that APF2 is abundantly expressed on vascular endothelial 
cells of both small and large arteries and veins (Hamming 
et al. 2014) demonstrated the structures of virus inclusion 
in the endothelial cells of glomerular capillary loops and 
signs of widespread endotheliitis in the heart, lungs, kid-
neys, liver and gastrointestinal tract in pathological sam-
ples from patients with severe COVID-19 (Varga et al. 
2020). Damage to the endothelium and its dysfunction in 
coronavirus infection may be the result of direct infection 
with SARS-CoV-2 (for example, by induction of intra-
cellular oxidative stress (Khomich et al. 2018), as well as 
due to a deep systemic inflammatory reaction.

In addition, hyperglycemia is known to disrupt en-
dothelial function (Avogaro et al. 2008). Interestingly, 
even in subjects with normoglycemia who have a high 
risk of diabetes and insulin resistance, ED was observed 
during an oral glucose tolerance test (Title et al. 2000). 
The mechanisms of ED in patients with diabetes melli-
tus are associated with a decrease in NO synthesis and 
increased production of vasoconstrictors (Johnstone et 
al. 1993). The results of scientific studies show that in 
patients with diabetes, oxidative stress, NADPH oxidase 
and eNOS dissociation play an important role in the de-
velopment of ED (Hsueh et al. 2004). Hyperglycemia also 
leads to the formation of advanced glycation endproducts 
(AGE), which are products of non-enzymatic glycation of 
proteins and lipids. AGEs accumulate in the vessel wall, 
alter the structural integrity of the endothelium and base-
ment membrane and are able to interfere with the activity 
of NO. This significantly contributes to the development 
of ED. In addition, AGEs bind to specific surface recep-
tors that are expressed on cells such as monocytes, macro-
phages and vascular smooth muscle cells, which leads to 
an increased inflammatory response, increased vascular 
permeability and oxidative stress (Soldatos et al. 2005; 
Avogaro et al. 2008). Vitamin D deficiency (1α, 25-di-
hydroxycholecalciferol) becomes a new candidate among 
the causes of ED development. Vitamin D appears to be 
indirectly involved in the development of endothelial 
dysfunction and systemic inflammation. The presence of 
vitamin D receptors on the surface of endothelial cells 
has been shown (Kassi et al. 2013). In patients with sub-
clinical atherosis and slow coronary blood flow, a strong 
association was found between vitamin D deficiency and 
ED (Oz et al. 2013). There are reports in scientific papers 
that vitamin D stimulates the production of NO in endo-
thelial cells by activating eNOS (Wong et al. 2010; Khan 
et al. 2018). Recent experimental studies in vivo and in 
vitro allow us to say with confidence that the vitamin D 
analog (22-oxacalcitriol) significantly suppresses the in-
creased expression of NADPH oxidase, while increasing 
ENOS binding, thereby reducing oxidative stress in the 
endothelium (Oz et al. 2013). Moreover, vitamin D pro-
tects endothelial cells from oxidative stress, preventing 
the formation of superoxide radicals, and apoptosis.

Also, some studies say that high cholesterol, LDL and 
low HDL levels are independently associated with ED and 

inflammation (Mineo et al. 2006). In patients with hyper-
cholesterolemia, a violation of the activation of the met-
abolic pathway of L-arginine (substrate NO) was found 
(Hadi et al. 2019). In patients with coronary artery disease 
and dyslipidemia, it was suggested that increased degra-
dation of NO under the action of ROS, since the infusion 
of L-arginine partially normalized the impaired function 
of the coronary endothelium (Cziráki et al. 2020). Possi-
ble mechanisms underlying dyslipidemia-induced ED in-
clude: 1) activation of NADPH oxidase, development of 
oxidative stress and increased production of superoxide 
radicals (O2-); 2) increased plasma ADMA levels; and 3) 
LDL oxidation. ADMA is an endogenous eNOS inhibitor, 
which competes with L-arginine for the same binding site 
on eNOS, which leads to eNOS dissociation. As a result, 
O2 production increases and NO production decreases 
(Antoniades et al. 2009). OxLDL cause vasoconstriction 
by suppressing the action of endothelium-dependent va-
sodilators and increasing endothelin expression; stimulate 
proliferation and migration of smooth myocytes, prolifera-
tion and subendothelial infiltration of monocytes; increase 
the production of adhesive molecules by endothelial cells 
(ICAM, VCAM), stimulate aggregation and adhesion to 
endothelial cells of leukocytes and platelets, increase co-
agulation activity of the endothelium, inducing the release 
of tissue factor and inhibiting fibrinolysis; stimulate the 
formation of ROS, increase apoptosis, etc. (Markov 2005).

Excess visceral fat is also one of the most important 
factors in the occurrence and progression of ED. The 
idea of adipose tissue as an organ of accumulation and 
storage of energy substrates has finally become a thing of 
the past. Today, adipose tissue is considered as an import-
ant organ that synthesizes many hormone-like proteins. 
Among the adipocytokines synthesized by visceral fat, 
which play an important role in the pathogenesis of met-
abolic syndrome, TNF-α is known to disrupt the function 
of endothelial cells by increasing insulin resistance and 
its pro-inflammatory effect (Oz et al. 2013). Also, a num-
ber of clinical studies have shown that excess visceral fat 
is accompanied by a decrease in adiponectin synthesis. 
Adiponectin is a protein with antiarteriosclerotic activity, 
the receptor of which is located in vascular endothelial 
cells. NO is released when endothelial cells are stimulated 
by adiponectin, which is realized by activation of eNOS 
by adiponectin via AMP-activated protein kinase and the 
PI3K/Akt system (Deng et al. 2010). In patients with vis-
ceral obesity, as well as with diabetes mellitus, in whom 
the concentration of adiponectin is reduced, the endothe-
lial function is weakened (Szydełko et al. 2020).

An unconventional factor leading to endothelial dys-
function is hyperhomocysteinemia. This is evidenced by 
animal models of hyperhomocysteinemia (Virdis et al. 
2003). There are scientific data on the development of ED 
in patients with hyperhomocysteinemia without hyperten-
sion (Baszczuk et al. 2014). Studies on cells (Zhang et al. 
2000), animals (Virdis et al. 2003; Khadieva et al. 2019) 
and humans (Salvio et al. 2021) show that homocysteine 
reduces the bioavailability of NO due to oxidative excess. 
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Through inhibition of NO, production of prostanoid vaso-
constrictors, inhibition of EDHF (Heil et al. 2004; Cheng 
et al. 2011), homocysteine causes activation of the angio-
tensin 1 receptor (AT1) and generation of ROS (Cheng 
et al. 2009). It also inhibits ENOS by increasing ADMA 
production by reducing dimethylarginindimethylamino-
hydrolase (DDAH) activity (Stühlinger et al. 2001) and 
eNOS dissociation by reducing intracellular synthesis of 
BH4 (Topal et al. 2004), which leads to a decrease in bio-
availability of NO and an increase in ROS formation. In 
addition, homocysteine suppresses eNOS expression in 
human endothelial cells (Zhang et al. 2007), causes endo-
thelial damage, vascular deendothelization, and increas-
es platelet adhesion (Harker et al. 1976). Homocysteine 
also increases the formation of ROS due to phosphory-
lation of NADPH oxidase (Siow et al. 2006), as well as 
due increasing the activity of ACE as a result of homo-
cysteinylation of ACE with the formation of angiotensin 
II, which activates NADPH oxidase (Huang et al. 2015). 
Increased cardiovascular risk in patients with hyperho-
mocysteinemia may be explained by the mechanisms 
described above. This is especially important for patients 
with chronic renal failure, who often have elevated homo-
cysteine levels, which, as shown in recent studies, makes 
it possible to predict cardiovascular outcomes (Zhang et 
al. 2020; Shih et al. 2021).

Impaired endothelial cell function is also associated 
with high plasma uric acid levels (Tomiyama et al. 2011; 
Maruhashi et al. 2018). The pathological effect of uric acid 
on endothelial cells is apparently promoted by a number 
of different surface membrane carriers of urates, such as 
Glut-9 and URAT-1 (Price et al. 2006; Liu et al. 2017). As 
a result, the formation of chemokines and ROS is stimu-
lated, as well as the activation of adhesion molecules in 
combination with increased activity of NF-kB (kappa-bi 
nuclear factor) and a decrease in NO production, which 
contributes to the development of ED (Cai et al. 2017; 
Afonasyeva 2019; Yang et al. 2019).

To date, there is a lot of evidence that the cause of ED 
may be a primary genetic defect, as indicated by structur-
al changes in the eNOS gene in Japanese patients with es-
sential hypertension (Markov 2005), as well as a decrease 
in the synthesis of NO in the vessels and their endothe-
lium-dependent dilation in adolescents with primary hy-
pertension long before the first symptoms of the disease 
(Markov 2005) (apparently due to a genetic defect of en-
dotheliocytes) (Panza et al. 1993). In addition, it became 
known that a violation of L-arginine-dependent synthesis 
of NO can be observed in individuals with normal blood 
pressure levels, which is interpreted as a primary genetic 
defect underlying the development of ED. According to 
some authors, a defect in the genes responsible for the 
production and intensity of degradation of endotheli-
um-relaxing factors may potentiate the formation of ED. 
Thus, the nature of the primary factor contributing to the 
occurrence of ED is not completely clear.

There is a judgment that endothelial dysfunction, es-
pecially in hypertension, is probably associated with a 

violation of the phosphatidylinositol signaling pathway/
Ca2+. Since calcium ionophores stimulate the synthesis 
of NO by increasing the entry of calcium into endothelial 
cells regardless of the activation of membrane receptors, 
the presence of a structural defect or functional failure 
of these receptors or signaling mechanisms activated by 
these receptors in patients with arterial hypertension can-
not be ruled out (Markov 2005).

Thus, the literature data indicate a complex pathogen-
esis of ED. All these factors are closely interrelated, and 
their effect on the endothelium is difficult to separate. The 
clinical significance of ED is associated with its role in 
the development and/or progression of many diseases, not 
only of the cardiovascular system (Sun et al. 2020; Lit-
tle et al. 2021), but also rheumatological (Murdaca et al. 
2012), oncological (Toya et al. 2020; Ching et al. 2021), 
mental disorders (Morris et al. 2020) and many others 
(Vairappan 2015; Ekeloef et al. 2020; Joffre et al. 2020). 
This prevalence of endothelial dysfunction suggests that it 
is a common link in the pathogenesis of almost all diseas-
es. Probably, from these positions, ED can be put on a par 
with such universal damage mechanisms as activation of 
the immune system and inflammation, formation of ROS 
and oxidative stress, and some others. There are practi-
cally no diseases in which the above mechanisms are not 
activated to a greater or lesser extent. In addition, they are 
closely interrelated, including being the cause of ED.

Markers of endothelial 
dysfunction in various diseases

To assess ED, functional diagnostic methods have been 
developed, such as flow-mediated dilation, laser Doppler 
flowmetry, occlusive plethysmography, pulse wave prop-
agation velocity measurement, and in vitro methods using 
endothelial cell cultures and isolated organs (Storch et al. 
2017; Soldatov et al. 2018; Martins-Filho et al. 2020). 
However, functional methods are very time-consuming 
compared to laboratory methods for measuring the con-
centration of biomarkers in blood serum.

Currently, for the purpose of laboratory diagnosis of 
ED, a number of factors synthesized by endotheliocytes 
are being considered. The change in the level of these fac-
tors in biological fluids reflects a violation of the main 
functions of the endothelium: vasomotor, regulation of 
angiogenesis, barrier, adhesion and thromboresistance.

Obviously, to assess the function of the endothelium, 
it is possible to measure the concentration of NO metab-
olites, which is constantly released and metabolized into 
stable nitrite and nitrate ions. However, when studying 
the NO level in systemic arterial hypertension, ambigu-
ous results were obtained (Vasina et al. 2017). The next 
marker of endothelial dysfunction is ADMA, which is a 
structural analog of L-arginine and inhibits the activity 
of all isoforms of NO synthase, disrupting the formation 
of nitric oxide in the endothelium (Zhang et al. 2017). 
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It is known that ADMA is a competitive analog of argi-
nine; therefore, a decrease in the L-arginine/ADMA ratio 
is also very significantly associated with an increase in 
cerebrovascular risk (Tousoulis et al. 2015).

ET-1, a biologically active broad–spectrum peptide, 
can serve as another marker of ED reflecting the state 
of vasomotor function of the endothelium (Stepanova et 
al. 2019). ET-1 is expressed mainly in the endothelium 
(Davenport et al. 2016), and it is a factor that intensively 
stimulates vasoconstriction and mitotic activity of vascu-
lar muscle cells, fibroblasts, and cardiomyocytes. It also 
plays the role of a regulator of endothelial proliferation, 
stimulating endotheliocyte hyperplasia in low concentra-
tions and their production of NO and prostacyclin. ET-1 
serves as one of the significant markers of ED in a num-
ber of diseases: chronic and acute ischemic lesions of the 
brain and myocardium (Sapira et al. 2010), diabetes mel-
litus and its vascular complications (Sánchez et al. 2014; 
Sorrentino et al. 2018; Efimenko et al. 2022). In addition, 
this peptide is considered as a predictor of the severity 
and outcome of these pathological conditions.

Vascular Endothelial Growth Factor (VEGF) is known 
for its role in angiogenesis, promoting proliferation and 
migration of endothelial cells and increasing vascular 
permeability. VEGF is produced by endothelial and some 
other cells. The selective mitogenic activity of VEGF 
against endothelial cells suggests that its level in the 
blood can serve as one of the criteria for ED (Gershtein et 
al. 2015). At the same time, VEGF is a vital factor in the 
trophism of endothelial cells (Polverino et al. 2018), and 
an increase in its level in the blood can be compensatory, 
thereby indicating a favorable course of the pathological 
process, for example, in stroke (Gontschar et al. 2013).

Expression of the VEGF type 2 receptor (VEGFR-2) is 
limited to vascular endothelial cells. VEGFR-2 plays an 
important role in cell migration, endothelium-dependent 
vasodilation and angiogenesis, which makes it a good 
candidate for an ED marker (Lange et al. 2016).

Vasogibin-1 (VASH1) is a new, currently actively stud-
ied marker of ED, which is formed in endothelial cells 
under the action of VEGF and the main fibroblast growth 
factor. It has been experimentally proven that VASH1 pre-
vents premature aging of endothelial cells and increases 
their resistance to stress (Miyashita et al. 2012), and with 
replicative aging of endotheliocytes, VASH-1 expression 
is significantly reduced (Takeda et al. 2016). For exam-
ple, with the instability of atherosclerotic plaques of the 
carotid arteries, the production of this protein increases, 
reflecting active vascularization and inflammation and in-
dicating the risk of ischemic stroke.

Endothelial cells play a key role in the transport of 
other cell types and metabolic substrates between the 
blood and the interstitial space. When these cells are ac-
tivated by pro-inflammatory proteins, such as C-reactive 
protein, bacterial endotoxins, interleukin 1B, TNF-α, the 
expression of cell adhesion molecules, such as ICAM-1, 
VCAM-1 and E-selectin, increases. Transendothelial mi-
gration of leukocytes is realized through these molecules. 

ICAM-1 is a member of the supergene family of immuno-
globulins and a ligand for integrin β2 molecules present 
on leukocytes (Hubbard and Rothlein 2000), and is highly 
expressed in endothelial cells and subendothelial macro-
phages (de Lemos et al. 2000). ICAM-1 mediates a num-
ber of intercellular interactions, including adhesion and 
migration of leukocytes to the vascular endothelial wall. 
Literature data support the hypothesis that ICAM-1 ex-
pression activates endothelial cells and leads to inflamma-
tion, which, in turn, is an important stage for the initiation 
and progression of atherosclerosis (Marzolla et al. 2017).

VCAM-1 expression is limited to endothelial cells 
(but sometimes to spindle cells). Unlike ICAM-1, which 
is produced in low concentrations, VCAM-1 is not ex-
pressed in healthy endothelial cells. It is assumed that 
VCAM-1 expression can lead to endothelial activation, 
since it increases monocyte recruitment and improves 
monocyte-endothelial interaction at the initial stages of 
atherosclerotic lesion formation (Habas and Shang 2018).

E-selectin belongs to the lectin family, participates in the 
attraction of leukocytes to the site of inflammation and is ex-
pressed by vascular endothelial cells, due to which it is a spe-
cific marker of endothelial activation (Hidalgo et al. 2007).

Markers of inflammation of CRP, CD40 ligand 
(CD40L), IL-18, chemotactic protein of monocytes 1, 
leading to endothelial activation, can act as markers of 
ED (Straface et al. 2010), since inflammation is an inte-
gral part of the development of atherosclerosis.

The endothelial damaging factor, in addition to CRP, is 
homocysteine, an amino acid formed in the body during 
methionine metabolism. Elevated homocysteine content 
is currently considered as an independent risk factor for 
the development of cardiovascular diseases (Afonasye-
va 2019). Hyperhomocysteinemia is also noted in stroke 
(Murmu et al. 2018) and other pathological conditions, 
causing the development of ED.

8-hydroxy-2’-deoxyguanosine is a modified nucleo-
side that is a product of oxidative DNA damage caused by 
the action of ROS. Recent studies suggest that this com-
pound can be considered as a fairly sensitive and specific 
early marker of ED in many pathological conditions, in-
cluding malignant neoplasms, atherosclerosis, cardiovas-
cular diseases and diabetes mellitus (Mahat et al. 2018).

Scientists suggest a direct relationship between elevat-
ed levels of circulating endothelial cells (CEC) in periph-
eral blood and a degree of endothelial damage in patients 
with atherosclerotic disease and vascular inflammation 
(Szmitko et al. 2003). Consequently, the amount of CEC 
measured by flow cytometry can serve as a marker of ED.

The enzyme myeloperoxidase can bind to glycosami-
noglycans in the walls of blood vessels and disrupt the 
release of endothelial NO, which leads to local ED. Sci-
entists have also recognized the role of this enzyme in 
the occurrence and development of atherosclerosis (Pen-
nathur and Heinecke 2007).

Markers of endothelial thromboresistance disorders in-
clude Willebrand factor and thrombomodulin, which are 
synthesized directly in the endothelium (Leite et al. 2020).
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Endocan, or endothelial cell-specific molecule-1 (bio-
marker of ED), is a proteoglycan dermatan sulfate and is 
secreted in response to inflammation not only by vascu-
lar endotheliocytes, but also by epithelial cells that line 
the distal tubules of the kidneys and bronchi (Zhang et 
al. 2012). On the one hand, endoxane increases VEGF-A 
expression and the interaction between VEGF-A and its 
VEGFR 2, increasing vascular permeability (Lee et al. 
2014), and on the other hand, VEGF directly induces en-
doxane expression (Sun et al. 2019).

Another marker of ED is free fatty acids (FFA). FFA 
can increase ROS levels by increasing cytokine produc-
tion in mononuclear cells. In addition, FFA can induce 
activation of the proinflammatory pathway NF-kB in hu-
man endothelial cells. In this regard, FFA is considered an 
early biomarker of ED and atherosclerosis, which is im-
portant for the prevention and treatment of cardiovascular 
diseases (Badimon et al. 2012).

Along with the well-known role of the endothelium in 
the pathogenesis of cardiovascular diseases, it has been 
demonstrated that the proper functioning of the endotheli-
um plays a role in human fertility (Santi et al. 2021). Since 
polycystic ovary syndrome is associated with the risk of 
cardiovascular diseases, early detection of ED is of clini-
cal importance. In this case, scientists consider increased 
VEGF, matrix metallopeptidase 9, visfatin, pentraxin-3, 
and soluble lectin-like oxidized low-density lipoprotein 
receptor-1 as markers of ED (Dambala et al. 2019).

Thus, the assessment of ED using various markers 
should be complex, since not all of the compounds list-
ed above have equally valuable prognostic significance. 
Therefore, the development of an optimal protocol for 
the diagnosis of ED is an urgent task for fundamental 
medicine at the present time. As ED indicators become 
clinically applicable, this may lead to an improved risk 
assessment methods that will help predict, prevent and 
treat cardiovascular diseases.

Therapeutic strategies

Evaluation of ED as a result of an imbalance in the forma-
tion of vasoactive messengers requires the development 
of new therapeutic approaches to the effect on the endo-
thelium in order to prevent or reduce a degree of damage 
to the vascular wall.

Currently, it has been proven that the modification of 
a person’s lifestyle and habits lead to an improvement 
in endothelial function. ED is one of the main damages 
caused by cigarette smoke (as well as vapors of electron-
ic cigarettes and hookahs (Münzel et al. 2020)). Toxic 
substances that enter the bloodstream during smoking 
(for example, free radicals and reactive glycation prod-
ucts) can react with endothelial and cause various vas-
cular damage (Prasad et al. 2015; Münzel et al. 2020). 
Cigarette smoking causes inflammation and also increas-
es ROS production and lipid peroxidation (Yamaguchi et 
al. 2005; Barbieri et al. 2011). Cigarette smoke extracts 

inhibit the activity of eNOS endothelial cells of the pul-
monary artery by changing the pattern of phosphorylation 
of eNOS (Wagner et al. 2007), which leads to a decrease 
in the bioavailability of NO. Quitting smoking leads to 
an improvement in endothelial function (Delgado et al. 
2020; Fukumoto et al. 2021).

Physical activity improves the condition of the endo-
thelium (Hirata et al. 2013). Physical exercise causes an 
increase in NO production, both in normotonics and in pa-
tients with hypertension (Nystoriak and Bhatnagar 2018).

Weight loss also contributes to the restoration of endo-
thelial function in obese patients. This is probably facili-
tated by the normalization of the production of cytokines 
released from visceral fat (Ziccardi et al. 2002).

Daily monitoring of blood glucose levels is one of 
the most important factors in ED correction (Chen et al. 
2021). In turn, compensation for hyper- and dyslipidemia 
contributes to normalization of endothelial function (Kim 
et al. 2012) and reduction of cardiovascular risk (Chen et 
al. 2021).

An excessive amount of fat consumed daily in food 
stimulates the development of the initial signs of ED in 
practically healthy individuals. It has been experimentally 
shown that a high-fat diet stimulates the formation of ox-
ygen free radicals (superoxide anions) that inactivate NO 
(Roberts et al. 2000). High salt intake suppresses the effect 
of NO in peripheral resistive vessels in animal hyperten-
sion modeling (Kurtz et al. 2018). A link between reduced 
NO production and high salt intake in clinical studies in 
patients with hypertension has also been demonstrated (Li 
et al. 2009; Boegehold 2013).

Polyunsaturated fatty acids, antioxidants, vitamins 
(especially, tocopherol and ascorbic acid), folic acid, and 
L-arginine have been found to have a beneficial effect on 
vascular endothelial function (Konovalova et al. 2019; 
Belenichev et al. 2021). They improve endothelium-de-
pendent vasodilation both in patients at high risk of car-
diovascular diseases and in healthy people without risk 
factors (Brownand Hu 2001; Kurtz et al. 2018).

In cases of smokers, diabetics, as well as patients 
with dyslipidemia and hypertension, vitamin C may be 
a substance that can improve the endothelium-dependent 
response (Engler et al. 2003; Sabri et al. 2016). By cap-
turing superoxide, it increases the bioavailability of NO, 
inhibits lipid peroxidation, activation of platelets and 
neutrophils, and activation of adhesion molecules, which 
in turn inhibits endotheliocyte damage (Matsumoto et al. 
2003). Vitamin C captures RF produced by peroxidase 
and inhibits the oxidation of LDL mediated by myeloper-
oxidase/H2O2/ nitrite (Cai et al. 2017).

Vitamin E also has a protective effect on the endothe-
lium in smoking and hypercholesterolemia (Engler et 
al. 2003), but its effect on diabetes remains controver-
sial (Skyrme-Jones et al 2000; Economides et al. 2005). 
Vitamin E acts as a fat-soluble antioxidant, trapping hy-
droperoxyl radicals in the lipid environment (Traberand 
Stevens 2011). The intake of antioxidants (vitamin E, C) 
contributes to the correction of endothelial function and 
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inhibits the thickening of the intima of the carotid artery 
(Frey et al. 2009).

N-acetylcysteine is an interchangeable amino acid that 
is mainly used in the treatment of cough. However, in the 
course of experimental studies, it turned out that it has 
pronounced antioxidant properties, acting on the produc-
tion of glutathione, which protects the cardiovascular sys-
tem from the harmful effects of TNF-α, which causes the 
production of ROS using NADPH oxidase and ceramide 
(Adamy et al. 2005; Scioli et al. 2014). Its action has a 
positive effect on the vessels in relation to the endothe-
lium-dependent response, and it does not matter wheth-
er they were affected by atherosclerosis (Andrews et al. 
2001). The effect of N-acetylcysteine on ED is mediated 
not only through a decrease in NADPH oxidase expres-
sion and suppression of leukocyte adhesion and secretion 
of inflammatory cytokines (Scioli et al. 2014), but also 
by inhibition of Willebrand factor-dependent platelet ag-
gregation and collagen binding in human plasma and in 
mice (Chen et al. 2011), attenuation of expression matrix 
metallopeptidase in microvascular endothelial cells in rats 
(Bourraindeloup et al. 2004), as well as inhibition of cave-
olin-1 activation and improvement of endothelial barrier 
function in mice (Beauchesne et al. 2010). These multiple 
effects contribute to the pronounced endotheloiprotective 
action of N-acetylcysteine. N-acetylcysteine interacts 
with endogenous and exogenous vasodilators. Moreover, 
in patients with systemic atherosclerosis, N-acetylcyste-
ine causes vasodilation (Salsano et al. 2005) and in hyper-
tensive patients it potentiates the hypotensive effects of 
angiotensin converting enzyme (ACE) inhibitors, thereby 
exhibiting vasoactive properties (Barrios et al. 2002).

Genistein (soy phytoestrogen) weakens ED in rats with 
hypertension and rats with hyperhomocysteinemia. This 
is achieved by increasing the activity and expression of 
eNOS and reducing the production of cytokines and ROS 
(Cho et al. 2011; Zhen et al. 2012). Genistein also increas-
es the concentration of nitrites/nitrates and reduces the 
levels of ET-1 in plasma (Ou et al. 2003). Thus, genistein 
may be effective for the treatment of ED that occurs in 
connection with atherosclerosis and hypertension.

Resveratrol (phytoestrogen with antioxidant proper-
ties) is a promising multi-purpose therapeutic agent for 
the correction of endothelial dysfunction. According to 
experimental studies, resveratrol modulates several pro-
cesses associated with endothelial dysfunction, such as 
vasorelaxation disorders, eNOS dissociation, oxidative 
stress, leukocyte adhesion, endothelial aging, smooth 
muscle proliferation and vascular remodeling (Gumanova 
et al. 2007; Kochkarov et al. 2008; Gureev et al. 2010). It 
was found that the endothelial protective effects of res-
veratrol are mediated by numerous molecular targets (Li 
et al. 2019; Parsamanesh et al. 2021) (for example, sirtu-
in-1 (SIRT1), 5’ AMP-activated protein kinase (AMPK), 
endothelial nitric oxide synthase (eNOS), redox-sensitive 
transcription factor of nuclear erythroid origin (Nrf2), 
the receptor activated by the proliferator peroxisome 
(PPAR), Krüppel-like factor-2 (KLF2) and nuclear factor 

“kappa-bi” (NF-kB)). Considering the fact that resvera-
trol is contained in large quantities in grapes and red wine, 
one of the promising directions may be an enotherapeutic 
approach to the correction of endothelial dysfunction.

It has been experimentally revealed that ACE inhibi-
tors exhibit endothelioprotective properties when admin-
istered to animals with heart failure (Varin et al. 2000) and 
those suffering from coronary heart disease (Bots et al. 
2007). This effect is associated with both a decrease in the 
level of angiotensin II and an increase in tissue bradykinin. 
In addition, in animal experiments, ACE inhibitors have 
been shown to enhance eNOS expression (Bachetti et al. 
2001; Fujii et al. 2002). This effect is realized through 
bradykinin B2 receptors (Bachetti et al. 2001; Fujii et al. 
2002). ACE inhibitors, as well as AT1 blockers, suppress 
the production of ROS and vasoconstrictors derived from 
COX-2, which contributes to the endothelioprotective ef-
fect of these drugs (Ancion et al. 2019).

There is also evidence that some beta-blockers have an 
endothelial protective effect. Nebivolol, a β1-antagonist 
with the property of a β2,3-agonist, improves endotheli-
um-dependent vasodilator reactions in patients with hy-
pertension (Zepeda et al. 2012) and in smokers (Vyssoulis 
et al. 2004). Nebivolol also reduces vascular remodeling 
and expression of ET-1 and cytokines when modeling pul-
monary hypertension in rats (Perros et al. 2015). Nebivo-
lol increases the release of NO and reduces prothrombotic 
levels of fibrinogen, homocysteine and plasminogen-1 
activator inhibitor in the blood, thereby affecting the state 
of the endothelium, in particular in smokers (Vyssoulis 
et al. 2004; Zepeda et al. 2012). Carvedilol, which is a 
non-selective antagonist of β1 and β2 with the property of 
an α-antagonist, also has a positive effect on the endothe-
lium in patients with hypertension, but this effect in this 
case is explained by its antioxidant properties (Zepeda et 
al. 2012). The combined use of carvedilol with an ACE 
inhibitor has the most beneficial effect on the endothe-
lium-dependent response in patients with hypertension 
and obesity (Kelly et al. 2012). Thus, this group of drugs 
alone and in combination with some others is suitable for 
the treatment of ED associated with hypertension, athero-
sclerosis and possibly diabetes.

Calcium channel blockers of the dihydropyridine se-
ries nicardipine and nifedipine protect endothelial cells 
from damage caused by exposure to ROS (Velena et al. 
2016). Benidipine has an endothelial protective effect 
against oxLDL-induced generation of ROS in human en-
dothelial cells (Matsubaraand Hasegawa 2005). Israpidin 
improves endothelial function in rabbits treated with cho-
lesterol (Habib et al. 1986). Thus, the endothelioprotec-
tive effect of dihydropyridine calcium channel blockers is 
realized through their antioxidant effect, namely through 
the reduction of lipid peroxidation and the associated 
generation of ROS (Velena et al. 2016). In addition, am-
lodipine, azelnidipine and nifedipine have been shown to 
have an anti-inflammatory effect, which was manifested 
by a decrease in the level of CRP and interleukin-6 and 
activation of leukocytes (Fukao et al. 2011; Yasu et al. 
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2013). Amlodipine in combination with a renin inhibitor 
improves ED in patients with arterial hypertension, which 
is apparently due to its NO-releasing effect and anti-in-
flammatory effect (Fukutomi et al. 2014; He et al. 2014; 
Celık et al. 2015). In addition, amlodipine in combination 
with statin has a better effect on the endothelium than the 
separate use of such drugs in rats with hypertension or 
diabetes (Okamura et al. 2014; Zhou et al. 2014). Thus, 
dihydropyridines can be effectively used not only for hy-
pertension, but also for the treatment of ED in diabetes.

Phosphodiesterase-5 inhibitors are of therapeutic in-
terest. Phosphodiesterase-5 (PDE5) is an enzyme that is 
found in vascular smooth muscles, heart, skeletal mus-
cles, platelets, placenta, brain, kidneys, liver, pancreas, 
gastrointestinal tract, and lung tissues (Kass et al. 2007). 
In the vascular network, the main action of PDE5 is the 
degradation of cGMP and, thus, the induction of vasocon-
striction. PDE5 inhibitors are often used to correct erectile 
dysfunction; they block the degradation of cGMP, which 
leads to its accumulation in tissues and, consequently, va-
sodilation (Boolell et al. 1996). PDE5 inhibitors increase 
the expression of eNOS and thereby increase the release 
of NO (Salloum et al. 2003; DeYoung et al. 2008), which 
contributes to a long-term vasodilator effect. PDE5 inhib-
itors have a number of other properties – in a model of 
mouse hind limb ischemia, the use of sildenafil has shown 
that not only does it improve blood flow restoration, but 
also increases capillary density and mobilization of endo-
thelial progenitor cells (Dussault et al. 2009). In patients 
with vascular erectile dysfunction, daily use of vardenafil 
reduces arterial stiffness (Aversa et al. 2012). However, 
PDE5 inhibitors can be used not only in ED conditions 
for erectile dysfunction. For example, inhibition of PDE5 
suppresses platelet activation in patients with coronary ar-
tery disease (Halcox et al. 2002) or with chronic heart fail-
ure (Bocchi et al. 2002; Lewis et al. 2007). Moreover, un-
der conditions of modeling diabetes mellitus in rats, this 
group of drugs improves endothelium-dependent vasore-
laxation (Schäfer et al. 2008). PDE5 inhibitors also reduce 
the concentration of ET-1 in plasma (Proietti et al. 2007), 
thereby improving microcirculation (Rosato et al. 2009). 
However, the mechanism underlying the action of PDE5 
inhibitors to reduce ET-1 has not yet been determined.

The endothelioprotective effect of statins involves sev-
eral mechanisms. Under the influence of statins, there is a 
decrease in LDL, which, like oxLDL, reduce the expres-
sion of eNOS (Martínez-González et al. 2001) and increase 
the levels of caveolin-1 (Feron et al. 2001). Statins also 
have a direct antioxidant effect on LDL, reducing the elec-
tronegative form of LDL (Sánchez-Quesada et al. 1999). 
Statins increase the bioavailability of NO by activating 
eNOS via the PI3K/Akt signaling pathway (Kureishi et 
al. 2000), stimulated by the agonists of the eNOS-hsp90 
interaction (Feron et al. 2001) and the BH4-mediated 
binding of eNOS. These properties were demonstrated not 
only in the model of insulin-resistant diabetes mellitus in 
rats (Okamura et al. 2014), but also in patients suffering 
from atherosclerosis (Antoniades et al. 2011). These stud-

ies have shown that atorvastatin promotes an increase in 
the vascular content of BH4 and bioavailability of NO, 
as well as a decrease in ROS production by stimulating 
the expression and activity of the GTP cyclohydrolase I 
gene (Antoniades et al. 2011). In addition, statins increase 
eNOS expression by increasing the stability of eNOS 
mRNA (Rikitake and Liao 2005; Kosmidou et al. 2007). 
Statins also have an anti-inflammatory effect (Antonopou-
los et al. 2012; Denisyuk 2015). For example, treatment 
with atorvastatin reduces pro-inflammatory cytokines 
(TNF-α, interleukin-1 and -6), intercellular adhesion mol-
ecules and CRP levels in the blood of patients with hyper-
cholesterolemia (Ascer et al. 2004), while rapid discontin-
uation of statins provokes an increase in proinflammatory 
and prothrombotic markers (Lai et al. 2005). Statins have 
also been shown to increase the number of circulating 
endothelial progenitor cells, probably via the PI3K/Akt 
pathway (Dimmeler et al. 2001), which may contribute to 
their longer-term endotheliotropic effect.

One of the promising therapeutic agents in the treatment 
of ED is Angiotensin-(1-7). It is a metabolite of angioten-
sin I (Su 2014). It can also be obtained from angiotensin II 
under the action of prolylcarboxypeptidase (Mallela et al. 
2008) and carboxypeptidase APF2 (Zisman et al. 2003). 
Angiotensin-(1-7) activates endothelial cell eNOS via the 
PI3K/Akt pathway, thereby inhibiting angiotensin II-in-
duced activation of NADPH oxidase (Sampaio et al. 2007a, 
2007b). Long-term angiotensin therapy (1-7) improves re-
nal ED, pathogenetically caused by apolipoprotein E defi-
ciency (Stegbauer et al. 2011) and diet-induced obesity in 
mice (Beyer et al. 2013) which is probably mediated by an 
increase in NO release (Traskand Ferrario 2007)and eNOS 
expression (Zhang et al. 2008;Costaetal. 2010). Angioten-
sin-(1-7) has also been shown to disrupt the production of 
ROS activated by the angiotensin receptor AT1 NADPH 
oxidases in the modeling of hypertension or diabetes melli-
tus in rats (Fraga-Silva et al. 2013; Pernomian et al. 2014). 
Angiotensin-(1-7) restores the production and migration 
of NO/cGMP, and increases the stability and proliferative 
activity of endothelial progenitor cells in patients with di-
abetes (Jarajapu et al. 2013). However, there is not enough 
information about the effectiveness of angiotensin-(1-7) in 
relation to the human endothelium yet.

In recent years, a new class of drug has appeared – a 
direct renin inhibitor – aliskiren. The endothelioprotec-
tive effect of aliskiren on animals has been experimentally 
demonstrated. In rabbits with Watanabe hyperlipidemia, 
the renin inhibitor aliskiren enhanced both an increase 
in NO concentration in the blood and a decrease in NO 
release after treatment with L-NMMA (nitric oxide syn-
thase inhibitor) to a degree similar to that obtained with 
valsartan; in addition, it simultaneously reduced the area 
of plaques in the aorta. These effects were further en-
hanced by the combined use of aliskiren and valsartan 
(Imanishi et al. 2008), which indicates that the effect of 
aliskiren is independent of angiotensin II. However, infor-
mation on the effect of aliskiren on the functional activity 
of the human endothelium remains insufficient.
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Endogenous bradykinin, as mentioned above, has 
many different effects on the functional state of the en-
dothelium. As a pharmacological drug, it protects against 
the death of microvascular endothelial cells caused by 
ROS and toxins (Bovenzi et al. 2010). Long-term use 
of bradykinin preserves the expression of eNOS in dogs 
with cardiac insufficiency caused by pacing (Tonduangu 
et al. 2004), and also enhances the expression of eNOS 
and nNOS (neuronal nitric oxide synthase) in the vessels 
and heart of dogs with cardiomyopathy with dystrophin 
deficiency (Dabiré et al. 2012; Su et al. 2012). However, 
due to the very short half-life and the involvement of 
bradykinin in inflammation (Chen et al. 2004) and cancer 
(Montana and Sontheimer 2011; Yu et al. 2013), the use 
of bradykinin in clinical practice remains problematic.

The eNOS transcription enhancer, the chemical com-
pound AVE3085, has certain prospects for ED correc-
tion. It stimulates eNOS expression, suppresses oxidative 
stress and activates platelets, thereby improving endo-
thelium-dependent relaxation and heart function, which 
was found in animals with various experimental diseases 
(Cheang et al. 2011; Yang et al. 2011). This compound, 
among other things, prevents the inhibition of vasodi-
lation by asymmetric dimethylarginine (ADMA) in the 
rings of the human internal thoracic artery and in the rings 
of the porcine coronary artery (Xuan et al. 2012; Xue et 
al. 2012). However, its clinical efficacy in relation to hu-
mans has not yet been demonstrated.

One of the controversial candidates for the treatment 
of ED is the if-channel inhibitor ivabradine. A number of 
studies have revealed its positive effect on both endotheli-
um-dependent vasodilation and eNOS expression in both 
animals and humans (Bolduc et al. 2011; Musikhina et al. 
2012; Orea-Tejeda et al. 2013). However, the authors of 
some studies note that there was no significant improve-
ment in vasodilation under the action of ivabradine in 
patients with microvascular angina (Villano et al. 2013), 
as well as in patients with other forms of coronary heart 
disease (Jochmann et al. 2014) or type II diabetes (Nerla 
et al. 2012). Moreover, the use of ivabaradine (in addition 
to standard treatment) in patients with stable coronary ar-
tery disease without heart failure was associated with an 
increase in the frequency of atrial fibrillation, which casts 
doubt on the usefulness of this drug (Fox et al. 2014).

There is evidence of endothelioprotective effects of 
sphingosine-1-phosphate (C1F). C1F is a signaling sphin-
golipid formed by sphingosine kinase in blood and tis-
sues, regulates vascular proliferation, their permeability 
and transport of T- and B-lymphocytes. C1P enhances 
the function of the endothelial barrier (Wilkerson et al. 
2014) stimulates the release of NO through Akt-mediated 
phosphorylation of eNOS (Igarashi et al. 2001) and re-
stores high-density lipoproteins (Tong et al. 2014). C1F 
also has anti-inflammatory properties and has a protective 
effect against lung damage caused by endotoxins (Lucke 
and Levkau 2010). Moreover, C1F has a strong effect on 
the differentiation of adipose tissue-derived stem cells 
into endothelial-like cells and the activation of eNOS in 

these cells (Arya et al. 2014). All these properties of C1F 
can contribute to its endothelioprotective effect. Inter-
estingly, FTY720, an oral active analogue of C1F, also 
demonstrates similar properties (Van der Giet et al. 2008). 
Thus, C1F and its analogues can be used to improve the 
functional state of the endothelium, especially in such 
pathological conditions as atherosclerosis and acute lung 
damage, when a violation of the function of the endothe-
lial barrier is manifested (Natarajan et al. 2013).

Another promising drug for the treatment of ED is 
erythropoietin (EPO). EPO activates the PI3K/Akt path-
way and promotes the release of NO. In addition, there 
is evidence showing that the concentration of EPO in the 
blood is directly proportional to the amount of EPC in pa-
tients with coronary heart disease (Heeschen et al. 2003). 
In addition, the introduction of EPO increased the amount 
of EPC. These data suggest that EPO may play an import-
ant role in the production of EPC.

Several authors of large prospective studies report a 
significant reduction in cardiovascular events in patients 
with major depressive disorder who responded to antide-
pressant therapy (Santangelo et al. 2009; Kimmel et al. 
2011; Safronenko et al. 2021). In these patients, there 
was a significant improvement in ED and inflammation 
markers, which was confirmed by increased endothelial 
dilation and a decrease in interleukin-6 levels (Pizzi et 
al. 2009; Tseng et al. 2010; Lopez-Vilchez et al. 2016). 
There is also evidence to suggest that the effectiveness 
of low doses of lithium in borderline personality disor-
der and stroke may be partially associated with improved 
endothelial function and reduced inflammation in the en-
dothelium (Lyoo et al. 2010; Mohammadianinejad et al. 
2014; Li et al. 2018).

Recently, H2S donors have attracted the attention of 
researchers with the discovery of new therapeutic strat-
egies for the treatment of various ED-related diseases 
(Benavides et al. 2007; Martelli et al. 2014; Tomasova et 
al. 2015; Abramavicius et al. 2021). Sodium thiosulfate 
is the main product of H2S oxidation. Sodium thiosulfate 
is an odorless inorganic water-soluble compound with 
the chemical formula Na2S2O3 and a molecular weight of 
158.11 g/mol. Recent data show that sodium thiosulfate 
has antioxidant, anti-inflammatory and antihypertensive 
properties (Roorda et al. 2021), which makes it a poten-
tial candidate molecule in the treatment of ED-related 
diseases. In addition to the fact that thiosulfate is a stable 
non-toxic metabolite of H2S (Bilska-Wilkosz et al. 2017), 
it is also sulfane sulfur, which is defined as sulfur atoms 
covalently bound to other sulfur atoms, which makes it 
unstable and easily oxidized in air and reduced by thiols 
(Koike and Ogasawara 2016). It is known that compounds 
containing sulfane sulfur have cell regulation effects due 
to activation or inactivation of enzymes and changes in 
protein activity (Mustafa et al. 2009). The functions of 
sulfane sulfur include antioxidant regulation, sulfonation 
of tRNA and the formation of iron-sulfur protein. As an 
H2S donor molecule, sodium thiosulfate has unexplored 
therapeutic potential in the context of many diseases. 
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Over the past few years, a number of independent research 
groups have found positive effects of sodium thiosulfate 
on animal models of various diseases (Zhang et al. 2021).

Conclusion

ED is a typical pathological process involved in the patho-
genesis of many diseases. In some diseases, such as ath-
erosclerosis, ED plays a crucial role in the development 
of pathology, whereas in others, such as hypertension and 
type II diabetes mellitus, ED usually occurs as a compli-
cation, but subsequently contributes to the development 
and progression of organ damage. It is obvious that mul-
tiple mechanisms are involved in the pathogenesis of ED 
development, such as inflammation, increased ROS and 
RFA, cellular apoptosis, increased production of vasocon-

strictors, decreased production of vasodilators and vascu-
lar remodeling, and each specific pathology may include 
them to a greater or lesser extent. However, a decrease 
in the bioavailability of NO seems to play a crucial role. 
Thus, pharmacological agents with endothelioprotective 
properties can provide more therapeutic benefits than a 
drug without such an effect. Considering the important 
role of ED in the development and progression of many 
diseases, it is becoming increasingly attractive to consid-
er ED as a primary therapeutic goal. For this reason, the 
evaluation of the endothelioprotective effect is becoming 
increasingly attractive in the development of new drugs.
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