Molecular docking studies of N-substituted 4-methoxy-6-oxo-1-aryl-pyridazine-3-carboxamide derivatives as potential modulators of glutamate receptors
DOI:
https://doi.org/10.3897/rrpharmacology.6.52026Abstract
Introduction: The virtual target-oriented screening is a necessary stage of modern drug-design. In the present study, the affinity of pyridazine derivatives for the most promising antiparkinsonian biotargets – I–III groups of metabotropic and ionotropic NMDA-glutamate receptors – was evaluated.
Materials and methods: Docking of the studied ligands to the active sites of biotargets – mGluR5, mGluR3, mGluR8, NMDA GluN2B – was performed using AutoDockVina. Base of the preparation of ligands and proteins – AutoDockTools-1.5.6. A Discovery Studio Visualizer 2017/R2 was used to visualize the interpretation of the results.
Results and discussion: A high degree of the affinity is predicted for group III of the metabotropic mGlu8 receptors – binding energy from -5.0 to -8.7 kcal/mol, compared to -6.1 kcal/mol of that of the reference drug (L-AP4), as well as for the ionotropic NMDA GluN2B receptors –binding energy from -8.7 to -11.6 kcal/mol, compared to -11.3 kcal/mol of that of ifenprodil.
Conclusion: The prospects of the searching for glutamate receptor modulators in a number of n-substituted 4-methoxy-6-oxo-1-aryl-pyridazine-3-carboxamide derivatives are proved. Some aspects of the structure-affinity relationship are discussed.